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ABSTRACT: This paper presents a biogeography-based optimization based algorithm for solving constrained optimal 
power flow problems in power systems. In this paper, we extend the original BBO and present a flexible real-coded 
BBO approach, referred to as FRCBBO, for the global optimization problems in the deregulated power system. Using 
flexible real coded biogeography-based optimization (FRCBBO), we present the optimization of various objective 
functions of an optimal power flow (OPF) problem in a power system. We aimed to determine the optimal settings of 
control variables for an OPF problem. The proposed approach was tested on a standard IEEE 30-bus system and an 
IEEE 57-bus system with different objective functions. The results indicate the good performance of the proposed 
FRCBBO method.  
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I.INTRODUCTION 
 
Biogeography-based optimization (BBO) is a new optimization algorithm, and, thus far, it has been used in power 
system optimization. The application of biogeography to optimization was first presented in 10], and it describes how a 
natural process can be modelled to solve general optimization problems. BBO maintains its set of solution from one 
iteration to the next, although the characteristics change as the algorithm progresses. BBO has many features in 
common with the PSO algorithm. In PSO, solutions are maintained from one iteration to the next, but each solution is 
able to learn from its neighbours and adapt itself as the algorithm progresses. However, PSO solutions do not change 
directly; first, their velocities are changed, then positions change.  
 

II. RELATED WORKS 
 

The optimal power flow (OPF) problem has become an essential function for operation, control, and planning of 
modern power systems. It was first introduced by Dommel and Tinney [1]. The OPF problem can be defined as 
determining the optimal settings of a given power system network that optimize a certain objective function while 
satisfying power flow equations and inequality constraints, such as system security and equipment operating limits. 
Several conventional optimization techniques, such as linear programming, the interior point method, the reduced 
gradient method, and the Newton method [2], have been applied to solve the OPF problem assuming continuous, 
differentiable, and monotonically increasing cost functions. However, higher-order non-linearity and discontinuities are 
observed in practical input–output characteristics due to valve point loading. Conventional methods have failed in 
handling non-convex and non-differentiable optimization problems. Hence, it becomes essential to develop 
optimization techniques that are capable of overcoming these drawbacks. In recent years, many evolutionary algorithms 
(EAs), such as the genetic algorithm (GA) [3], simulated annealing (SA) [4],particle swarm optimization (PSO) [5], 
evolutionary programming (EP) [6], hybrid EP (HEP) [7], ant colony optimization (ACO) [8], and bacteria foraging 
optimization (BFO) [9], have been proposed, which are more or less successful in handling various non-linear 
optimization problems. These techniques can solve non-convex, non-smooth, and non-differentiable optimization 
problems efficiently and often achieve a fast and near global optimal solution. 
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The power of flexible real coded biogeography-based optimization (FRCBBO) to solve the OPF problem is discussed 
in this paper. The BBO algorithm has been employed to IEEE 30-bus, IEEE 57-bus systems having linear operating 
constraint. The same three objective functions are used in this study, namely, minimization of fuel cost, improvement 
of voltage profile, and improvement of voltage stability.  In the FRCBBO approach, therefore, an adaptive Gaussian 
mutation is integrated into the OPF problem, thereby avoiding premature convergence, improving population diversity, 
and enhancing the exploration ability. 

 
III. PROBLEM FORMULATION 

 
Generally, an OPF problem is a large-scale, highly constrained nonlinear optimization problem. It may be defined as: 

minf(x, u)																																(1) 
 

subject	to	g(x, u) = 0												(2) 
 

h((x, u) ≤ 0																									       (3) 
 

Where f is the objective function to be minimized, x and u are the vectors of dependent and independent control 
variables, respectively, g is the equality constraint, and h is the operating inequality constraint. The vector of dependent 
variables can be represented as: 

X୘ = 	 ൛Pୋଵ, V୐ଵ … V୐୒୮୯ , Qୋଵ … Qୋ୒୥, S୐ଵ … S୐୒୪ൟ													(4) 
 
Where PG1 denotes the slack bus power; VL denotes the load bus voltage; QG denotes the reactive power output of the 
generator; SL denotes the transmission line flow; Npq is the number of load buses; Ng is the number of voltage-
controlled buses and Nl is the number of transmission lines. The vector of independent control variables can be 
represented as: 

u୘ = ൛Pୋଶ … Pୋ୒୥, Vୋଵ … Vୋ୒୮୯, Tଵ … T୒୲, Qେଵ … Qେ୒ୡൟ     (5) 
 

Where PG is the active power output of generators; VG is the voltage at the voltage-controlled bus; T is the tap setting of 
the tap-changing transformer; and QC is the output of shunt VAR compensators; Nt and Nc are the number of tap-
changing transformers and shunt VAR compensators, respectively. 
 
Equality constraints (g) 

Pୋ୧ − Pୈ୧ −∑ V୧V୨[G୧୨cos	(δ୧୒ୠ
୨ୀଵ − δ୨) + B୧୨sin	(δ୧ − δ୨)] = 0			i = 1,2, … … Nb                      (6) 

 
Qୋ୧ − Qୈ୧ −∑ V୧V୨[G୧୨sin	(δ୧୒ୠ

୨ୀଵ − δ୨) + B୧୨cos	(δ୧ − δ୨)] = 0			i = 1,2, … … Nb                     (7) 
 

Where PGi and QGi are the injected active and reactive power at ith bus, respectively; PDi and QDi are the demanded 
active and reactive power at ith bus, respectively; Vi and Vj are the magnitude of voltage at ith and jth bus, respectively; 
Gij and Bij are the real and imaginary part of the admittance of line connected between ith and jth bus; δ୧ and δ୨ are the 
phase angle of voltage at ith and jth bus, respectively; Nb is the number of buses. 
 
Inequality constraints (h)  
(i)Generator constraints: The generator active and reactive power outputs and voltage are restricted by their upper and 
lower limits. 

Pୋ୧୫୧୬ ≤ Pୋ୧ ≤ Pୋ୧୫ୟ୶i = 1,2, … … Ng							(8) 
 

Qୋ୧
୫୧୬ ≤ Qେ୧ ≤ Qେ୧

୫ୟ୶i = 1,2, … … Ng							(9) 
 

Vୋ୧୫୧୬ ≤ Vୋ୧ ≤ Qୋ୧
୫ୟ୶i = 1,2, … … Ng																													(10) 

 
(ii) Transformer constraints: Tap-changing transformers have minimum and maximum setting limits: 

T୧୫୧୬ ≤ V୧ ≤ Tୋ୧୫ୟ୶i = 1,2, … … Nt																																(11) 
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(iii) Switchable VAR sources: These have minimum and maximum limits: 
Q୧
୫୧୬ ≤ Qେ୧ ≤ Qେ୧

୫ୟ୶i = 1,2, . . Nc																																			(12) 
 
(iv) Security constraints: These include the limits on load bus voltage and transmission line flow. 

V୪୧୫୧୬ ≤ V୐୧ ≤ V୐୧୫ୟ୶i = 1,2, … Npq																																(13) 
 

MVA୏ ≤ MVA୏
୫ୟ୶ 																																																															(14) 

 
Where MVAk is the power flow at kth line; MVAk

max is the power flow capacity of kth transmission line. Finally, the 
objective function with all constraints combined for the OPF problem. 

 
 

IV. BIOGEOGRAPHY-BASED OPTIMIZATION 
 

Dan [11] proposed a comprehensive algorithm (BBO) for solving optimization problems based on the study of 
geographical distribution of species. A BBO algorithm has two main operators: migration operator and mutation 
operator. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Model of immigration and emigration probabilities. 
 
A. Migration operator  
Migration is a process of probabilistically modifying each individual in the habitat randomly. A geographical area with 
high habitat suitability index (HSI) tends to have a large number of species, high emigration rate, and low immigration 
rate. Suitability index variables (SIVs) define the characteristics of a habitat. A habitat with a high HSI tends to be 
more static in its species distribution. Such an habitat signifies a good solution in terms of an optimization problem. 
Immigration rate, ⋋୩, and emigration rate, μ୩, are functions of the number of species in a habitat. For a habitat with no 
species, its immigration rate can be the highest. ⋋୩ is given by 

⋋୏=I ቀ1− ୏
୬
ቁ                            (15) 

 
Where I is the maximum possible immigration rate, k is the number of species of kth individual, and n is the maximum 
number of species. , μ୩ is given by: 

μ୩ = E ቀ୏
୬
ቁ                               (16) 

 
Where E is the maximum possible emigration rate. 
B. Mutation operator  
Mutation tends to increase the diversity of a species in a habitat. Due to natural events, the HSI of a habitat can change 
dramatically, causing the species count to shift away from its equilibrium value. Species count may be a probability 
value (Pi). If this probability value is very low, an individual solution is thought to have beenmutated with other 
solutions. So, the mutation rate of an individual solution can be calculated using species count probability, given by: 

M୧ = 	M୫ୟ୶ ቀ
ଵି୔౟
୔ౣ౗౮

ቁ                                                      (17) 
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Where Mi is the mutation rate, Mmax is the maximum mutation rate, which is a user-defined parameter, and Pmax is the 
maximum probability of species count. In BBO, a mutation characteristic function is given by: 

X′୧ = X୧ + rand (0.1) × ൫X୧
୫ୟ୶ − X୧

୫୧୬൯                         (18) 
Where Xi is the decision variable; Xi

max andXi
min are the lower and upper limits of the decision variable, respectively. 

 
V. FLEXIBLE REAL CODED BIOGEOGRAPHY-BASED OPTIMIZATION 

 
RCBBO was proposed by Gong et al. [12] as an extension to BBO. In RCBBO, individuals are represented by a D-
dimensional real parameter vector, and a probabilistically based Gaussian mutation is used. The Gaussian mutation 
characteristic function is given by: 

X′୧ = X୧ + N (µσ୧ଶ)                                                         (19) 
 

WhereN = (μ,σଶ)represents the Gaussian random variable with mean l and varianceσଶ. The values of mean and 
variance are considered 0 and 1, respectively.Generally, a probability-based mutation operation is known to improve 
the convergence characteristics. Therefore, adaptive Gaussian mutation is applied in the present work to improve the 
solution of a worst half set of habitats in the population. In Eq. (19), μ = 0, and σ୲ is found using the following 
equation: 

σ୧= β× ∑ ቀ ୊౟
୤ౣ౟౤

ቁ୬
୧ୀଵ × ൫X୧

୫ୟ୶ − X୧
୫୧୬൯                          (20) 

 
Whereβ the scaling factor or mutation probability, Fi is the fitness value of ith individual, and f min is the minimum 
fitness value of the habitat in the population. Adaptive mutation probability is given by: 

β = β୫ୟ୶ - ஒౣ౗౮ିஒౣ౟౤
୘ౣ౗౮

× T                                             (21) 
 

Whereβ୫ୟ୶ = 1, β୫୧୬ =0:005, Tmax is the maximum iteration, and T is the current iteration. The use of adaptive 
mutation can prevent premature convergence, thereby producing a smooth convergence. This method of mutation can 
be easily used with real-coded variables, which have been widely used in EP, and hence to carry out local as well as 
global searches. The steps for solving the OPF problem using proposed FRCBBO is as follows:  
 
Step 1: Initialization  

Habitat modification probability (Pmod), minimum and maximum values of adaptive mutation probability 
(β୫୧୬andβ୫ୟ୶), maximum immigration and emigration rates for each island, maximum species count (P), and 
maximum iterations are initialized.  
 
Step 2: Generate SIVs for the habitat randomly within the feasible region. Individuals (control variables) in the habitats 
are initialized as: 

X୧୨ = X୨
୫୧୬ + rand(0.1) × ൫X୨

୫ୟ୶ − X୨
୫୧୬൯                       (22) 

where i =1, 2, ... , P and j =1, 2, ... , Nvar; Nvar is the number of control variables; Xj
max  and Xj

min  are the 
upper and lower limits of jth control variable.  
 
Step 3: Perform load flow analysis using Newton–Raphson method and determine the dependent variables (Eq. 4). 
Compute the fitness value (HSI) for each habitat set. 
Step 4: Based on the HSI value, elite habitats are identified.  
Step 5: Iterative algorithm for optimization: 

 Perform migration operation on SIVs of each non-elite habitat selected for migration. 
 Calculate immigration and emigration rates for each habitat set, using Eqs. (15) and (16).  
 Update the habitat set after migration operation.  
 Recalculate the HSI value of modified habitat set; feasibility of the solution is verified and habitat set sorted 

based on new HSI value. 
 Perform mutation operation on the worst half set of population by Gaussian adaptive mutation. In Eq. (19), 

mean( μ = 0)and varianceσଶ are calculated from the following equation: 
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σ୧୨=×
୊౟ౠ
୤ౣ౟౤

× ൫Pୋ୧୫ୟ୶ − Pୋ୧୫୧୬൯, i=2,3, . . . Ng                           (23) 
 

Where Fij is the fuel cost of ith generator (individual) of jth habitat; f min is the minimum fitness value of the habitat in 
the population; P Gi

max and P Gi min are the maximum and minimum limits of active power generation of ith generator. 
Fuel cost minimization is the main objective function for all case studies, fuel cost mainly depends on active power 
generation; each active power control variable contributes to minimize the fuel cost individually. So,σ୧୨ for active 
power control variables is calculated individually from the fuel cost of each active power generation. But other control 
variables (except active power control variables) are not directly related to fuel cost minimization function; they are 
used to satisfy the constraints of the OPF problem. So σ୧୨ for other control variables is calculated using the fitness value 
(Fj)of the jth habitat set (not individuals of habitat). 

σ୧୨ = β ×
୊౟ౠ
୤ౣ౟౤

× ൫X୧
୫ୟ୶– X୧

୫୧୬൯                                     
i = Ng + 1. Ng + 2 … . . Nvar                                                 (24) 

 
Where Fj is the fitness value of jth habitat; Xi

max and Xi
min are the maximum and minimum limits of ith individual.  

 Compute the fitness value (HSI) for each habitat set after mutation operation and verify the feasibility of the 
solution.  

 Sort the habitat set based on new HSI value. 
 Stop the iteration counter if the maximum number of iterations is reached. 

Step 6: Finally SIVs should satisfy the objective function as well as constraints of the problem. 
 

VI. RESULTS AND DISCUSSION 
 

The power of the FRCBBO algorithm to solve the OPF problem was tested using an IEEE 30-bus and an IEEE 57-bus 
systems. All simulations were performed on a personal computer (i3 3.1 GHz Intel Processor and 2 GB RAM running 
MATLAB R2013a).  
 
A. IEEE 30-bus system  

An IEEE 30-bus system has six generators, four tap-changing transformers, and nine shunt VAR 
compensation buses for reactive power control. The system active power demand is 283.4 MW and reactive power 
demand is 126.2 MVAR at 100 MVA base. The magnitude of voltage limits for generator buses are 0.95–1.1 p.u. and 
for load buses are 0.95–1.05 p.u. Bus 1 is taken as the slack bus. 

The bus data and line data [13] and the minimum and maximum limits for control variables [14] are obtained 
from literature. The optimal control parameters for the algorithm are obtained by number of simulation results. They 
are: habitat size = 50, habitat modification probability = 1, immigration probability = 1, step size for numerical 
integration = 1, maximum immigration and emigration rate = 1, mutation probability = 0.005 and maximum number of 
iterations = 200.  

 
 Case 1: Minimization of fuel cost 
 It represents the quadratic cost function whose objective function is expressed as follows: 

f=FC=∑ (a୧ + 	b୧ × Pୋ୧ + c୧Pୋ୧ଶ )																																																			(25)	୒୥
୧ୀଵ  

 
Where FC is the total fuel cost; ai; bi and ci are fuel cost coefficients of the ith unit. The quadratic cost coefficients are 
obtained from Alsac et al. 
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Fig. 1. Convergence characteristics of proposed FRCBBO 

 
Results across different optimization techniques. The first three rows mentioned in the table are obtained from 

our own implementation of algorithms; i.e. original BBO [15] and RCBBO [16]. Best fuel cost obtained by the 
proposed FRCBBO was 800.5159 $/h, and average fuel cost was 800.6412 $/h. Table-1 shows the convergence 
characteristics of optimization methods, considered in this work are depicted in Fig. 1, which indicates premature 
convergence in FRCBBO 

 
Table: 1 Minimization of Fuel Cost 

 

 
 
Case 2: Voltage profile improvement  
This objective function minimizes the fuel cost while enhancing the voltage profile by minimizing all the load bus 
voltage deviation from 1.0 p.u. It can be expressed as: 

f = 	෍(a୧ + b୧ ×
୒୥

୧ୀଵ

Pୋ୧ + C୧ × Pୋ୧ଶ) +	⋋෍|V୧ − 1.0|																												(26)
୒୮୯

୧ୀଵ

 

Where⋋ is a weighting factor selected by the user, the sum of voltage deviation in this case is 0.0920, which was 
0.8867 in the previous case. Hence there is an improvement from 89.62% in the voltage profile. The results of this 
objective function across different optimization methods considered. Table-2 shows the proposed FRCBBO shows a 
better solution than other. The best solution is infeasible because the reactive power of the slack bus is 20.1144, in 
violation of the limits reported. 
 

Table: 2 Voltage Profile Improvements 

 

BUS SYSTEM FUEL COST ($/h) 
BEST AVERAGE WORST 

IEEE 30 700.5159 700.6412 700.9262 
IEEE 57 41686 41718 41737 

BUS SYSTEM VOLTAGE DEVIATION(p.u) 
BEST AVERAGE WORST 

IEEE 30 0.095 0.1008 0.011 
IEEE 57 0.147 0.122 -0.004       
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Case 3: Enhancement of voltage stability  
Voltage stability is the ability of a power system to maintain acceptable voltages at all buses in the system under 
normal conditions. A system enters a state of voltage instability when a disturbance, such as an increase in load demand 
or change in system condition, causes a progressive and an uncontrollable decrease in voltage. Table-3 shows voltage 
stability is an important parameter in a power system operation. It can be defined via minimizing the voltage stability 
indicator (L-index) values of each bus of a power system. The L-index of a bus specifies the proximity of the voltage 
collapse condition of that bus. The L-index of a jth load bus is defined as: 
 

L୨ = ቮ1 −෍F୧୨
V୧
V୨

୒୥

୧ୀଵ

ቮ																										(27) 

 
j = 1,2, … Npq																																		(28) 

 
F୧୨ = 	−[Yଵ]ିଵ[Yଶ]																												(29) 

 
Where Vi is the voltage of the ith generator bus and Vj is the voltage of the jth load bus. Y1 and Y2is the sub matrices of 
the system Ybus obtained after separating the load and generator buses parameter. Lj equal to one represents the 
voltage collapse condition of jth bus. So, a global power system’s L-index is given as: 

L = max (L j)       j = 1, 2, ... ,Npq     (30) 
A lower value of L-index represents a more stable system. An objective function combining minimization of fuel cost 
and enhancement of voltage stability is suggested by minimizing the L-index value. The results of this objective 
function across different optimization methods considered are presented. The best solutions are infeasible because the 
voltage magnitudes at most of the load buses are greater than 1.05 p.u., which violate their limits reported in [17]. 
 

Table: 3 Enhancement of Voltage Stability 

 
VII.CONCLUSION 

 
Using case studies approach, FRCBBO has been implemented successfully in different power systems for congestion 
management. This algorithm is ideal for independent system operators to solve different objective functions in 
deregulated environments. Our simulation results suggest that the proposed FRCBBO approach is able to improve 
exploration ability and diversity of the population, in addition to yielding good convergence characteristics and 
robustness, as with other heuristic algorithms. The present work adds further evidence to suggest that the proposed 
FRCBBO is the best to solve nonlinear objective functions, with its ability to prevent premature convergence of 
solutions. The objectives of fuel cost minimization, voltage profile and voltage stability enhancement under intact and 
contingency conditions were successfully tested using this approach. The results of the problem are compared against 
literature results obtained using different optimization methods. 
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